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Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics
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After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report
partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying
fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio u/kgT of chemical
potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correla-
tion functions are also presented as a function of the statistical parameter, with Friedel oscillations developing

close to the fermion limit, for sufficiently large density.
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I. INTRODUCTION

Current interest in fractional statistics [1-3] is motivated
by its possible relevance for fractional quantum Hall effect
[4,5] and high-temperature superconductivity [6]. In this
context, an early application was made by Lea et al. [7,8] to
discuss the de Haas—van Alphen oscillatory orbital magne-
tism of a two-dimensional electron gas. Quite recently, it has
been proposed that noise experiments in quantum Hall fluids
might reveal the existence of elementary excitations obeying
fractional statistics [9,10].

Fractional exchange statistics [1-3] arises when the
many-body wave function of a system of indistinguishable
particles (dubbed anyons) is allowed to acquire an arbitrary
phase ¢’ upon an adiabatic exchange process of two par-
ticles. Here, « is the so-called statistical parameter, interpo-
lating between =0 (bosons) and a=1 (fermions). Such an
exchange produces a nontrivial phase only if the configura-
tion space of the collection of particles under study possesses
a multiply connected topological structure. Therefore, frac-
tional exchange statistics is usually restricted to two spatial
dimensions, d=2 (see Ref. [11] for a review). However, frac-
tional exchange statistics can be formalized, to some extent,
also in d=1 [12,13].

A different concept of fractional statistics, namely frac-
tional exclusion statistics, is based on the structure of the
Hilbert space, rather than the configuration space, of the par-
ticle assembly, and is therefore not restricted to d=2. Frac-
tional exclusion statistics has been introduced by Haldane
[14], who considered the ratio

¢=—AD/AN, (1)

where AD denotes the change in size of the subset of avail-
able states in the Hilbert space corresponding to a change AN
of the number of particles (i.e., elementary excitations).
Clearly, one has again g=0 for bosons and g=1 for fermions,
the latter being a consequence of Pauli exclusion principle.
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At variance with anyons, particles obeying fractional exclu-
sion statistics are usually dubbed g-ons or exclusons. The
distribution function for fractional exclusion statistics has
been derived by Wu [15]. A limiting form of the same dis-
tribution function had been derived by March et al. [16]
within an approximate chemical collision model (see also
Refs. [17,18]). Following Wu’s distribution function [15], the
thermodynamics of an ideal gas with fractional exclusion
statistics has been studied in some detail in arbitrary dimen-
sions [19,20].

The relation between fractional exchange and exclusion
statistics is elusive. In particular, it has been emphasized [21]
that in order to derive a consistent statistical mechanics for
g-ons, Haldane’s generalized exclusion principle, Eq. (1),
must hold locally in phase space, which indeed applies rig-
orously to either bosons or fermions. In other words, AD in
Eq. (1) should be related to states of close energy, which is
brought about by an effective interaction which is local in
momentum space. From this, it has been concluded that
anyons are not ideal g-ons, but interacting g-ons [21].
Haldane [14] provides explicit examples of systems for
which fractional exclusion, albeit not exchange, statistics
might be applicable. An earlier attempt to relate the param-
eter g of fractional exclusion statistics and the statistical pa-
rameter « of fractional exchange statistics has been made in
Ref. [22], on the basis of the virial expansion of the g-ons
partition function. More recently, an analytic, monotonic re-
lation g=g(a) has been derived in Ref. [23] in the case g
=1/m (for integer m), which is relevant for the fractional
quantum Hall effect (see also Ref. [24] for a review).

In an electron gas, statistical correlations between nonin-
teracting fermions arise as a consequence of particle indis-
tinguishability. In the case of fermions, the antisymmetry of
the wave function implies that two such particles can never
be found simultaneously at the same point in space. As a
result, each electron is surrounded by an exchange hole, a
region in which the density of same-spin electrons is smaller
than average and in which, therefore, the positive back-
ground charge is not exactly cancelled. It is the interaction of
each electron with the positive charge of the exchange hole
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that gives rise to the exchange energy. The situation is quite
the opposite for bosons, where statistical correlations are at-
tractive and may be thought of being ultimately responsible
of Bose-Einstein condensation. In the case of intermediate or
fractional statistics, the question naturally arises of how
many particles does a particle effectively “see” around itself.
In other words, one is led to consider the effect of Haldane’s
generalized exclusion principle on the exchange hole which
a g-on digs around itself.

In this work, we attempt to answer such a question, by
evaluating a suitably defined generalization of the pair cor-
relation function between g-ons (i.e., particles obeying frac-
tional exclusion statistics), in arbitrary dimensions d (d
=1,2,3), as a function of temperature T and particle density.
Earlier results along this direction include the seminal work
of Sutherland [25], for a system of fermions or bosons in d
=1 interacting through a singular potential ~1/r2, a problem
which can be mapped into anyons [11]. The evaluation of a
pairwise correlation function for anyons (i.e., particles obey-
ing fractional exchange statistics) in d=2 at T=0 has been
also recently analyzed in Ref. [26], in connection with an
intensity interferometry gedanken experiment, which may
prove useful in the context of quantum computing. The ques-
tion is also intimately related to that of finding Uhlenbeck’s
statistical interparticle potential [27], which has been studied
for the two-anyons system in d=2 [28].

The paper is organized as follows. In Sec. II we derive the
pair correlation function for a homogeneous assembly of
g-ons as a function of interparticle separation r. In Sec. IT A
we study numerically the dependence of the chemical poten-
tial on density at a given temperature, for arbitrary dimen-
sions d=1,2,3, thereby reproducing Wu’s analytical result at
d=2. In Sec. Il B we study numerically the pair correlation
function, and in particular focus on the possible occurrence
of Friedel oscillations, depending on the statistical parameter
and on the scaled density. We eventually summarize in Sec.
1.

II. PAIR CORRELATION FUNCTION FOR
NONINTERACTING g-ONS

Statistical correlations between indistinguishable, hard-
core particles can be described by means of the pair correla-
tion function g(r), defined as the normalized probability of
simultaneously finding a particle at position r and a particle
at position r=0. (Here and below, we are implicitly neglect-
ing spin.) In the formalism of second quantization, the pair
correlation function can be written as

(V)P0 (0)¥(r)
- n(r)n(0)

g(r) 2)
Here, Wi(r) [W(r)] is a creation (annihilation) quantum field
operator at position r, n(r)=(¥'(r)¥(r)) is the single-
particle probability density at position r, and (- --) denotes a
quantum statistical average associated with the equilibrium
distribution of the particle assembly under study (see below).
In the case of a homogeneous system, one obviously has

n(r)=n(0) and g(r)=g(r).
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In the case of either fermions or bosons, the four-point
average appearing in the right-hand side of Eq. (2) can be
reduced by means of Wick’s theorem as

(P ()P (0)P(0)W(r)
= (P ()W () (P (0)W(0)) + (P (r) W(0)X W' (0)W(r)),
3)

the plus (minus) sign corresponding to bosons (fermions). In
the case of particles obeying exclusion statistics, the appro-
priate generalization of Wick’s theorem depends on the be-
havior of exclusion field operators under exchange. As em-
phasized in the Introduction, the relation between fractional
exclusion and exchange statistics is not completely settled.
Within fractional exchange statistics in reduced dimensional-
ity (d=2), one obviously has the following graded commu-
tation relations:

(W), ¥(r")], = VE)P(r') - ™ TP (e ) W(r) = 0,

(4a)
[W(r), ¥ (r)],=0, (4b)
[¥(r), ¥ (r')],=8r-r1"), (4c)

with s(r,r’)=+1, depending on whether the exchange is be-
ing performed along a (counter)clockwise path in d=2 [11],
or s(r,r’')=sgn(r—r") in d=1[12]. Equations (4a)—(4c) natu-
rally reduce to the familiar commutation and anticommuta-
tion relations for bosons (a=0) and fermions (a=1), respec-
tively. In d=3, the sign s(r,r’) is ill-defined, and in fact
fractional exchange statistics does not apply to dimensions
d=3. In order to have generalized commutation relations
valid for exclusons in arbitrary dimensions, we therefore as-
sume real field operators, assign a statistical exchange pa-
rameter « to exclusons (g-ons), and postulate that standard
quantum Bose or Fermi statistics are weakly violated as in

[V(r),¥(r')],=VY(r)¥(r')-cos(am)¥(r')¥(r)=0,

(5a)
[W(r), ¥ (r")],=0, (5b)
[W(r), ¥ (r")],= 8 -r"), (5¢)

which again reduce to the familiar relations for bosons and
fermions, in the appropriate limits. Following Ref. [29] for
the generalization of Wick’s theorem corresponding to Egs.
(5a)—(5¢), Eq. (3) becomes
(W)W (0)W(0)W(r))
= (P ()P ()P (0)W(0)) + cos(am)(W'(r)W(0))
X(UT(0)¥(r)). (6)

Correspondingly, the pair correlation function for a homoge-
neous assembly of g-ons reads
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(T ()W (0)

n*(0) 7
which correctly reduces to the fermion limit (a=1), with
g(r)=1, manifestly [30].

For translationally invariant systems, one may use a plane
wave expansion to find

)

g(r)=1+cos(am)

~ N2
g(r) =1+ cos(am) % , (8)
where
d
() = f (j;;de-f“n(k) 9)

is the Fourier transform in d dimensions of the single-particle
distribution function n(k) for g-ons in equilibrium at tem-
perature 7.

Following Wu [15], the average occupation number n; of
exclusons in an energy state ¢; at equilibrium is

1

Qv a (10

where {=exp[(€;—u)/kgT], p is the chemical potential, and
the function w({) satisfies the functional equation

w1 +w)"=¢. (11)

Here and below, we shall use the standard notation g=a,
even for exclusons. Equation (10) establishes the thermody-
namics of the excluson assembly, once the energy level dis-
tribution ¢; is given, which is determined by the free-particle
dynamics. In order to make contact with the ordinary Bose
and Fermi limits, we shall then assume that €;=%%;/(2m),
and then treat k;—>Kk as a continuous variable, as is under-
stood in Eq. (8) with n;—n(k).

An approximate form of the distribution function for ex-
clusons had been earlier derived by March et al. [16-18]
from collision theory, by using the detailed balance hypoth-
esis. Their result was that nlfl:{ +a, with a interpolating
between Bose (a=—1) and Fermi (a=+1) statistics. Com-
parison with Wu’s result, Eq. (10), then yields [16,18]

ala,w)=w+a-wi(l+w) " *=2a-1, (12)

the latter approximation, independent of w, holding in the
limit w>> 1. Equation (12) already correctly interpolates be-
tween the Bose (a=0, a=-1) and Fermi (a=1, a=1) lim-
its. Of course, as w becomes small, the dependence of a on w
is significant, though 2a—1 is not a bad approximation even
at w=1 (giving for a:%, a=0 instead of 0.09, and for «
i, a:—% rather than —0.44).

A. Chemical potential

Within these assumptions, the general properties and
some exact results of the thermodynamics of an assembly of
noninteracting exclusons have been derived to some extent
[15,19,20]. Some properties of Wu’s function w({) in the
complex ¢ plane and their relevance for Cooper pairing of
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uw/kT

FIG. 1. Chemical potential vs scaled density, Eq. (15), for «
=0, 0.5, 1 (bottom to top) and d=1,2,3.

exclusons have been discussed in Ref. [31]. In particular, by
evaluating the particle density

d'k
%:j Wﬂ(k) (13)

in dimensions d=2, Wu [15] was able to derive the relation
between chemical potential w, temperature 7, and particle
density N/V explicitly as

NN NN
L:a—+ln{1—exp<— —)], (14)
kgT 1% 1%

where N=fi\27/ (mkgT) is the thermal wavelength. Perform-
ing the integration in Eq. (13) for a homogenous system in
arbitrary dimensions d (see also Ref. [20]), such a relation
can be generalized implicitly as

d ©
F(g)uv:f dW;E(d—Z)/Z’ (15)
2]V v w(l+w)

0

where I'(x) is Euler’s function, wy=wq(u/kgT) is a general-
ized inverse fugacity, implicitly defined by Wu’s functional
equation for €=0, i.e.,

wi (1 +w) o = gwlkgT (16)
and

wo(1 +w)!l~

e=In[w*(1 +w)'~%e*"] = In— -
Wo(l +W0) @

(17)
Eliminating w, between Egs. (15) and (16), we obtain the
relation between the ratio wu/kzT of chemical potential to
thermal energy and the scaled density NN/ V, parametrically.
This is plotted in Fig. 1 for several values of the statistical
parameter «, and d=1,2,3. We explicitly note that the dilute
limit N“N/V <1 corresponds to wy>>1 (w/kzT——%). We
thus recover a monotonic relation, as expected, which for
a=0 (Bose limit) leads to an infinitesimally small negative
chemical potential, in the limit of large density.

B. Pair correlation function

Following an analogous procedure, and performing the
integration required in Eq. (9) for an isotropic system in d
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FIG. 2. Pair correlation function g(x) (in scaled units), Eq. (8),
in d=2, for wy=0.1 (dense limit) and a=0-1 (top to bottom). Inset
shows Friedel oscillations, which are present only close to the
Fermi distribution (FD) limit (0.5<a=1).

dimensions, for the Fourier transform of the equilibrium dis-
tribution function of an assembly of noninteracting exclusons
we find

* 1
)\dﬁ(x) — x—vJ dW—EV/ZJV(ZxE”z), (18)
w

WO (1 + W)

where x=\mr/\, v=(d-2)/2, and J,(z) is a Bessel function
of the first kind, arising from the integration over angles in d
dimensions. Making use of the asymptotic properties of the
Bessel functions [32], it can be shown that Eq. (18) correctly
reduces to Eq. (15) for the particle density in the limit x
— 0. Further analytical results concerning the local excluson
density 71(x) are derived in the Appendix.

Figure 2 shows g(x) in d=2 for wy=0.1 (corresponding to
a relatively large particle density), and for a=0-1. In the
fermion limit (a=1) and close to it (0.5<a=1), the pair
correlation function exhibits a correlation hole around x=0,
whose depth decreases with decreasing « and eventually
vanishes as a— % In the same range of values of the statis-
tical parameter, g(x) is characterized by damped Friedel os-
cillations (cf. inset of Fig. 2), which are more pronounced
close to the fermion limit. These oscillations are absent
within numerical accuracy in the prevalently bosonic range
of the statistical parameter, 0= a=0.5, where the pair cor-
relation function displays a monotonically decreasing behav-
ior, with correlations piling up at x=0, in contrast with the
fermion limit. Qualitatively similar results (not shown here)
are obtained in d=1 and d=3.

Figure 3 shows again the pair correlation function in d
=2 for a=0-1, but now for wy=0.5, corresponding to a
lower particle density. While the fermion side (0.5<a=1)
is still characterized by a correlation hole, and the boson side
displays a monotonic decrease of correlations, with a maxi-
mum at x=0, Friedel oscillations are now beyond graphical
resolution even in the quasifermion regime (cf. inset of Fig.
3), as an effect of the reduced particle density. Again, quali-
tatively similar results obtain also in d=1 and d=3.

In order to make more quantitative the latter statement,
we now inquire on the condition giving rise to Friedel oscil-
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FIG. 3. Pair correlation function g(x) (in scaled units), Eq. (8),
in d=2, for wy=0.5 (dilute limit) and a=0-1 (top to bottom). Inset
shows the absence of Friedel oscillations, even close to the Fermi
distribution (FD) limit (0.5 a=1).

lations in the pair correlation function. Generally speaking,
Friedel oscillations in many-body properties of fermion as-
semblies arise from the presence of a discontinuity in the
Fermi distribution function at the Fermi level. Besides de-
creasing at 7=0 as a function of distance with a power law,
depending on dimensionality, such oscillations are then ex-
ponentially damped with a characteristic decay length
~N\%kp, with kj the Fermi wave vector.

In the case of particles obeying fractional exclusion sta-
tistics, Wu’s distribution function, Eq. (10), in scaled units
displays a smoother inflection point at a value €, correspond-
ing to w,=a—1+va*—a+1 in Eq. (17). When w, = w, such
an inflection point lies within the integration range in Eq.
(18), and does therefore give rise to marked Friedel oscilla-
tions in the behavior of the pair correlation function. Such a
condition has been studied numerically as a function of
scaled particle density NYN/V and statistical parameter a,
and is reproduced in Fig. 4 for various dimensionalities d
=1,2,3 in the form of a phase diagram.

AIN/V
N w N [6)] » ~ [00]

nF

o 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 08 09 1
o

FIG. 4. Phase diagram in the plane of scaled density NN/ V vs
statistical parameter «. The phase diagram features regions where
pronounced Friedel oscillations occur in the pair correlation func-
tion (F), and where such oscillations are absent, or beyond graphi-
cal resolution (nF). Different lines refer to various dimensionalities
(d=1,2,3).
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The plane of scaled density N?N/V vs statistical parameter
« is divided into two regions by the line implicitly defined by
the equation w,=w. At a fixed value of the statistical param-
eter «, say, one might think of increasing the fermioniclike
correlations of a given g-on assembly (i.e., sharpening the
Friedel oscillations in the pair correlation function) by suit-
ably increasing its scaled density AN/ V, i.e., increasing den-
sity N/V or reducing temperature 7.

Within this picture, one may also estimate the wavelength
A of the oscillations in the pair correlation function with the
approximate condition 2VEA =2, which straightforwardly
leads to

2
A 27 , (19)

me,

where all dimensions have been restored. Clearly, as €,—0
as a— 0, one recovers the absence of Friedel oscillations in
the bosonic limit.

III. SUMMARY

A brief discussion of the different concepts of fractional
exchange and fractional exclusion statistics is first given.
Then we have focused on some thermodynamical properties
and on the pair correlation function of an assembly of non-
interacting particles obeying exclusion statistics in arbitrary
dimensionality d=1,2,3 and given temperature 7. In par-
ticular, Egs. (15) and (16) allow the chemical potential to be
studied as a function of scaled particle density and dimen-
sionality. The pair correlation function is then studied as a
function of interparticle distance for different values of the
statistical parameter « and of the scaled density NYN/V,
where \ is the de Broglie thermal wavelength. The behavior
of the pair correlation function correctly exhibits a correla-
tion hole in the fermion limit, and a pronounced maximum in
the boson limit. Away from the boson limit, it also features
Friedel oscillations, whose sharpness and wavelength can be
tuned as a function of the statistical parameter and of scaled
particle density. Our results show that, in principle, tuning
density and temperature may sharpen the statistical correla-
tions among noninteracting exclusons, thus ending in a be-
havior closer to either the fermionic or the bosonic limit,
depending on dimensionality and on the value of the statis-
tical parameter «. This may be relevant to systems exhibiting
the fractional quantum Hall effect [14], where anyons, i.e.,
particles obeying fractional exchange statistics, can be re-
garded as effectively interacting exclusons [21].

Note added in proof. An equivalent formulation of Eq.
(11) has been independently derived by A. Dasnieres de
Veigy and S. Ouvry [33,34] for an anyon gas in a magnetic
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field. We thank Professor Ouvry for pointing out the above
references.
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APPENDIX: RECURSION FORMULAS FOR THE LOCAL
EXCLUSON DENSITY

Equation (18) yields 72,(x,wy)=n(x) as a function of
scaled interparticle distance x and generalized inverse fugac-
ity wy, at a given statistical parameter « and reduced dimen-
sionality v=(d-2)/2. By differentiating Eq. (18) with re-
spect to x, and making use of the appropriate recursion
formula for the Bessel functions [32], one obtains

on

—= + 2x17[,,+1 =0.

ax (A1)

Similarly, by differentiating the same Eq. (18) with respect to
wy, and taking into account Eq. (17), one obtains

an, de\ _
+ (—) Wyt + py(wg) =0, (A2)
dwg  \dw/
where
d +
(_'f) __atwy (A3)
dw/o wo(l +wp)
and
| o
puw) = —————€ (A4)

F'v+1)wd+w)

is the density of states in the w variable, in d=2v+2 dimen-
sions. Equations (A1) and (A2) are then differential recur-
sion formulas relating the local excluson density at different
dimensionalities. Combining Egs. (A1) and (A2), and noting
that p,,;(wo)=lim,,_,, p,41(w)=0 for d=1,2,3, one obtains

(927’7,) a+wg

n,, (A5)

=2X
(9W0 ax Wo(l + Wo)

which is a hyperbolic partial differential equation for the
local excluson density, similar to the Klein-Gordon equation,
but with a variable mass term.

061123-5



PELLEGRINO et al.

[1]J. M. Leinaas and J. Myrheim, Nuovo Cimento Soc. Ital. Fis.,
B 37,1 (1977).
[2] F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982).
[3] F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).
[4] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[5] R. B. Laughlin, Phys. Rev. B 27, 3383 (1983).
[6] R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988); 61, 379(E)
(1988).
[7TM. J. Lea, N. H. March, and W. Sung, J. Phys.: Condens.
Matter 3, 4301 (1991).
[8] M. J. Lea, N. H. March, and W. Sung, J. Phys.: Condens.
Matter 4, 5263 (1992).
[9] E.-A. Kim, M. Lawler, S. Vishveshwara, and E. Fradkin, Phys.
Rev. Lett. 95, 176402 (2005).
[10] F. E. Camino, W. Zhou, and V. J. Goldman, Phys. Rev. B 72,
075342 (2005).
[11] S. Forte, Rev. Mod. Phys. 64, 193 (1992).
[12] Z. N. C. Ha, Quantum Many-Body Systems in One Dimension
(World Scientific, Singapore, 1996).
[13] P. Calabrese and M. Mintchev, Phys. Rev. B 75, 233104
(2007).
[14] F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991).
[15] Y. S. Wu, Phys. Rev. Lett. 73, 922 (1994); 74, 3906(E)
(1995).
[16] N. H. March, N. Gidopoulos, A. K. Theophilou, M. J. Lea, and
W. Sung, Phys. Chem. Lig. 26, 135 (1993).

PHYSICAL REVIEW E 76, 061123 (2007)

[17] N. H. March, J. Phys.: Condens. Matter 5, B149 (1993).

[18] N. H. March, Phys. Chem. Liq. 34, 61 (1997).

[19] G. S. Joyce, S. Sarkar, J. Spatek, and K. Byczuk, Phys. Rev. B
53, 990 (1996).

[20] K. Iguchi, Phys. Rev. Lett. 78, 3233 (1997).

[21] C. Nayak and F. Wilczek, Phys. Rev. Lett. 73, 2740 (1994).

[22] M. V. N. Murthy and R. Shankar, Phys. Rev. Lett. 72, 3629
(1994).

[23] A. D. Speliotopoulos, J. Phys. A 30, 6177 (1997).

[24] G. S. Canright and M. D. Johnson, J. Phys. A 27, 3579 (1994).

[25] B. Sutherland, J. Math. Phys. 12, 246 (1971).

[26] T. D. Gutierrez, Phys. Rev. A 69, 063614 (2004).

[27] G. E. Uhlenbeck and L. Gropper, Phys. Rev. 41, 79 (1932).

[28] W.-H. Huang, Phys. Rev. B 52, 15090 (1995).

[29] O. W. Greenberg, Phys. Rev. D 43, 4111 (1991).
[30] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liguid (Cambridge University Press, Cambridge, 2005).
[311G. G. N. Angilella, N. H. March, F. Siringo, and R. Pucci,
Phys. Chem. Liq. 44, 343 (2006).

[32] I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series,
and Products, 5th ed. (Academic, Boston, 1994).

[33] A. Dasnieres de Veigy and S. Ouvryde, Phys. Rev. Lett. 72,
600 (1994).

[34] A. Dasnieres de Veigy and S. Ouvryde, Mod. Phys. Lett. B 9,
271 (1995).

061123-6



